Multiview Pedestrian Detection Based on Online Support Vector Machine Using Convex Hull
نویسندگان
چکیده
The support vector machine (SVM), an assuring new method for the classification, has been widely used in many areas efficiently. However, the online learning issue of SVM is still not addressed satisfactorily since when a new sample arrives to retrain the SVM to adjust the classifier. This may not be feasible for real-time applications due to the expensive computation cost for re-training the SVM. This paper propose an Online SVM classifier algorithm known as OSVM-CH, which is based on the convex hull vertices selection depends on geometrical features of SVM. From the theoretical point of view, the first d+1(d is the dimension of the input samples) selected samples are proved to be vertices of the convex hull. This guarantees that the selected samples in our method keep the greatest amount of information of the convex hull. From the pedestrian detection application point of view, the new algorithm can update the classifier without reducing its classification performance. KEYWORDS-Kernel, online learning, machine learning, support vector machine, pedestrian detection, online classifier.
منابع مشابه
Multiview Pedestrian Detection Based on Vector Boosting
In this paper, a multiview pedestrian detection method based on Vector Boosting algorithm is presented. The Extended Histograms of Oriented Gradients (EHOG) features are formed via dominant orientations in which gradient orientations are quantified into several angle scales that divide gradient orientation space into a number of dominant orientations. Blocks of combined rectangles with their do...
متن کاملFast Incremental SVM Learning Algorithm based on Center Convex Vector
A fast SVM learning algorithm is proposed according to incremental learning and center convex hull operator. It is established on analyzing the relevance of support vector and convex hull from the angle of calculation geometry. The convex hull of current training samples is solved in the first place. Further, Euclidean distance elimination is applied to convex hull. Meanwhile, every time when t...
متن کاملA Pedestrian Detection System Using Applied Log-Gabor Filters
Pedestrian detection is one of the most important research contents of road safety. The crucial idea behind such pedestrian safety systems is to protect the driver and pedestrian from any accident. In this paper, a pedestrian feature extraction based on applied log-Gabor filters is presented. The resulting filtered images show desirable segmentation performance which allows support vector machi...
متن کاملMODELING OF FLOW NUMBER OF ASPHALT MIXTURES USING A MULTI–KERNEL BASED SUPPORT VECTOR MACHINE APPROACH
Flow number of asphalt–aggregate mixtures as an explanatory factor has been proposed in order to assess the rutting potential of asphalt mixtures. This study proposes a multiple–kernel based support vector machine (MK–SVM) approach for modeling of flow number of asphalt mixtures. The MK–SVM approach consists of weighted least squares–support vector machine (WLS–SVM) integrating two kernel funct...
متن کاملConvex Hull-Based Feature Selection in Application to Classification of Wireless Capsule Endoscopic Images
In this paper we propose and examine a Vector Supported Convex Hull method for feature subset selection. Within feature subspaces, the method checks locations of vectors belonging to one class with respect to the convex hull of vectors belonging to the other class. Based on such analysis a coefficient is proposed for evaluation of subspace discrimination ability. The method allows for finding s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014